Preview

Вестник СурГУ. Медицина

Расширенный поиск

ПОТЕНЦИАЛ ГЕРОПРОТЕКТОРНОЙ АКТИВНОСТИ ПОЛИФЕНОЛОВ ТИПИЧНЫХ СЕВЕРНЫХ ЯГОД

Аннотация

Цель – представить аналитический материал о потенциале геропротекторной активности полифенолов северных ягод: клюквы, брусники, черники.

Материалы и методы. Проведен литературный поиск в базах PubMed за последние 7 лет. Использованы ключевые слова: антивозрастной эффект (anti-aging), полифенолы, геропротекторы, клюква, брусника, черника, антиоксиданты, метаболический синдром и др.

Результаты. Результаты ряда экспериментальных работ и имеющиеся ограниченные клинические доказательства позволяют предполагать, что полифенолы северных ягод способны оказывать связанные с антиоксидативным действием некоторые потенциально терапевтические anti-aging эффекты при возраст-ассоциированной патологии. Исследования anti-aging эффектов северных ягод Западной Сибири и полифенольных экстрактов этих ягод представляются актуальными и необходимыми.

Об авторах

Е. А. Кривых
Ханты-Мансийская государственная медицинская академия
Россия
кандидат медицинских наук, доцент, заведующая кафедрой общественного здоровья и здравоохранения


А. Е Гуляев
Частное Учреждение «National Laboratory Astana» Назарбаев Университет
Казахстан
доктор медицинских наук, профессор, г. Астана, Республика Казахстан


Л. В. Коваленко
Сургутский государственный университет
Россия
доктор медицинских наук, профессор, заведующая кафедрой патофизиологии и общей патологии, директор медицинского института


Список литературы

1. Anderson R. M., Le Couteur D. G., de Cabo R. Caloric Restriction Research: New Perspectives on the Biology of Aging // J Gerontol A Biol Sci Med Sci. 2017. № 73(1) P. 1–3.

2. Pandey K. B., Rizvi S. I. Plant polyphenols as dietary antioxidants in human health and disease // Oxidative Med Cell Longev. 2009. № 2. P. 270–278.

3. Pinnell S. R. Cutaneous photodamage, oxidative stress, and topical antioxidant protection // J Am Acad Dermatol. 2003. № 48. P. 19–21.

4. Souyoul S. A., Saussy K. P., Lupo M. P. Nutraceuticals: A Review // Dermatol Ther (Heidelb). 2018. № 8 (1). P. 16–25.

5. Peng C., Zuo Y., Kwan K. M. et al. Blueberry extract prolongs lifespan of Drosophila melanogaster // Exp Gerontol. 2012. № 47. P. 170–178.

6. Wilson M. A., Shukitt-Hale B., Kalt W., Ingram D. K., Joseph J. A., Wolkow C. A. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans // Aging Cell. 2006. № 5. P. 59–68.

7. Willis L. M., Shukitt-Hale B., Cheng V., Joseph J. A. Dose-dependent effects of walnuts on motor and cognitive function in aged rats // Br J Nutr. 2009. № 101. P. 1140–1144. DOI: 10.1017/S0007114508059369.

8. Johnson B. J., Lin B., Bongard J. E. Genus vaccinium: medicine, cosmetics, and coatings // Recent Pat Biotechnol. 2010. № 4 (2). P. 24–112.

9. Krenn L., Steitz M., Schlicht C., Kurth H., Gaedcke F. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements--analysis with problems // Pharmazie. 2007. № 62 (11). P. 803–812.

10. Vinson J. A., Su X., Zubik L., Bose P. Phenol antioxidant quantity and quality in foods: fruits // J Agric Food Chem. 2010. № 49. P. 5315–5321.

11. Neto C. C., Amoroso J. W., Liberty A. M. Anticancer activities of cranberry phytochemicals: an update // Mol Nutr Food Res. 2008. № 52 (suppl 1). P. 18–27.

12. Côté J., Caillet S., Doyon G., Sylvain J. F., Lacroix M. Bioactive compounds in cranberries and thei biological properties // Crit Rev Food Sci Nutr. 2010. № 50 (7). P. 666–679.

13. Borges G., Degeneve A., Mullen W., Crozier A. Identification of flavonoid and phenolic antioxidants in blackcurrants, blueberries, raspberries, red currants,

14. and cranberries // J Agric Food Chem. 2010. № 58 (7). P. 3901–3909.

15. Pappas E., Schaich K. M. Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability // Crit Rev Food Sci Nutr. 2009. № 49. P. 741–781.

16. Mc Kay D. L., Blumberg J. B. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors // Nutr Rev. 2007. № 65 (11). P. 490–502.

17. Guo H., Cao M., Zou S., Ye B., Dong Y. Cranberry Extract Standardized for Proanthocyanidins Alleviates β-Amyloid Peptide Toxicity by Improving Proteostasis Through HSF-1 in Caenorhabditis elegans Model of Alzheimer’s Disease // J Gerontol A Bio lSci Med Sci. 2016. Vol. 71, № 12. P. 1564–1573.

18. Guha S., Cao M., Kane R. M., Savino A. M., Zou S., Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 andosr-1 // Age (Dordr). 2013. № 35. P. 1559–1574.

19. Wang C., Yolitz J., Alberico T., Laslo M., Sun Y., Wheeler C. T., Sun X., Zou S. Cranberry interacts with dietary macronutrients to promote healthy aging in Drosophila // J Gerontol A Biol Sci Med Sci. 2014. № 69 (8). P. 945–954.

20. Zhu M., Hu J., Perez E., et al. Effects of long-term cranberry

21. supplementation on endocrine pancreas in aging rats // J Gerontol A Biol Sci Med Sci. 2011. № 66. P. 1139–1151.

22. Anhê F. F., Roy D., Pilon G., Dudonné S., Matamoros S., Varin T. V., Garofalo C., Moine Q., Desjardins Y., Levy E. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice // Gut. 2014. № 64. P. 872–883.

23. Anhê F. F., Roy D., Pilon G., Dudonné S., Matamoros S., Varin T. V., Garofalo C., Moine Q., Desjardins Y., Levy E., Marette A. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice // Gut. 2015. № 64 (6). P. 872–883.

24. Roopchand D. E., Carmody R. N., Kuhn P., Moskal K., Rojas-Silva P., Turnbaugh P. J., Raskin I. Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome // Diabetes. 2015. № 64. P. 2847–2858.

25. Baldwin J., Collins B., Wolf P. G., Martinez K., Shen W., Chuang C-C., Zhong W., Cooney P., Cockrell C., Chang E. et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice // J Nutr Biochem 2016. № 27. P. 123–135.

26. Anhê F. F., Pilon G., Roy D., Desjardins Y., Levy E., Marette A. Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? // Gut Microbes. 2016. № 7 (2). P. 146–153.

27. Novotny J. A., Baer D. J., Khoo C., Gebauer S. K., Charron C. S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults // J Nutr. 2015. № 145(6). P. 1185–1193. DOI: 10.3945.

28. Basu A., Betts N. M., Ortiz J., Simmons B., Wu M., Lyons T. J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome // Nutr Res. 2011. № 31 (3). P. 190–196.

29. Lee I. T., Chan Y. C., Lin C. W., Lee W. J., Sheu W. H. Effect of cranberry extracts on lipid profiles in subjects with Type 2 diabetes // Diabet Med. 2008. № 25 (12). P. 1473–1477.

30. Simão T. N., Lozovoy M. A., Simão A. N., Oliveira S. R., Venturini D., Morimoto H. K., Miglioranza L. H., Dichi I. Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome // Br J Nutr. 2013. № 110 (10). P. 1885–1894.

31. Dinh J., Angeloni J. T., Pederson D. B., Wang X., Cao M., Dong Y. Cranberry extract standardized for proanthocyanidins promotes the immune response of Caenorhabditis elegans to Vibrio cholerae through the p38 MAPK pathway and HSF-1 // PLoS One. 2014. № 9. DOI: 10.1371/journal.pone.0103290.

32. Seeram N. P. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease // J Agric Food Chem. 2008. № 56. P. 627–629.

33. White B. L., Howard L. R., Prior R. L. Polyphenolic composition and antioxidant capacity of extruded cranberry pomace // J Agric Food Chem. 2010. № 58. P. 4037–4042.

34. Heinonen M. Antioxidant activity and antimicrobial effect of berry phenolics – a Finnish perspective // Mol Nutr Food Res. 2007. № 51 (6). P. 684–691.

35. Howell A. B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections // Mol Nutr Food Res. 2007. № 51. P. 732–737.

36. Guay D. R. Cranberry and urinary tract infections // Drugs. 2009. № 69 (7). P. 775–807.

37. Howell A. B., Vorsa N., Der Marderosian A., Foo L. Y. Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by pro- anthocyanidin extracts from cranberries // N Engl J Med. 1998. № 339 (15). P. 1085–1086.

38. Jepson R. G., Craig J. C. Cranberries for preventing urinary tract infections // Cochrane Database Syst Rev. 2008. Jan 23 (1). CD001321.

39. Wang С. Н. et al. Cranberry-Containing Products for Prevention of Urinary Tract Infections in Susceptible Populations A Systematic Review and Meta-analysis

40. of Randomized Controlled Trials // Arch Intern Med. 2012. Vol. 172, № 13. P. 988–996.

41. Seeram N. P., Adams L. S., Zhang Y., Lee R., Sand D., Scheuller H. S., Heber D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro // J Agric Food Chem. 2006. № 54 (25). P. 9329–9339.

42. Eid H. M., Wright M. L., Anil Kumar N. V., Qawasmeh A., Hassan S., Mocan A., Nabavi S. M., Rastrelli L., Atanasov A. G., Haddad P. S. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients // Front Pharmacol. 2017. № 8. P. 387. DOI: 10.3389/ fphar.2017.00387.

43. Morimoto A., Ohno Y., Tatsumi Y., Mizuno S., Watanabe S. Effects of healthy dietary pattern and other lifestyle factors on incidence of diabetes in a rural Japanese population // Asia Pac J Clin Nutr. 2012. № 21. P. 601–608.

44. Eshak E. S., Iso H., Mizoue T., Inoue M., Noda M., Tsugane S. Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus // Clin Nutr. 2013. № 32. P. 300–308.

45. Cushnie T. P., Lamb A. J. Recent advances in understanding the antibacterial properties of flavonoids // Int J Antimicro Agents. 2011. № 38. P. 99–107.

46. Anhê F. F., Desjardins Y., Pilon G., Dudonné S., Genovese M. I., Lajolo F. M., Marette A. Polyphenols and type 2 diabetes: A prospective review // Pharma Nutr. 2013. № 1. P. 105–114.

47. Choy Y. Y., Jaggers G. K., Oteiza P. I., Waterhouse A. L. Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract // J Agr Food Chem. 2013. № 61. P. 121–127.

48. Grace M. H., Esposito D., Dunlap K. L., Lila M. A. Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild Alaskan and commercial Vaccinium berries // Agric Food Chem. 2014. № 62(18). P. 4007–4017.

49. Bhullar K. S., Rupasinghe H. P. Antioxidant and cytoprotective properties of partridgeberry polyphenols // Food Chem. 2015. № 168. P. 595–605.

50. Isaak C. K., Petkau J. C., Karmin O., Debnath S. C., Siow Y. L. Manitoba Lingonberry (Vaccinium vitis-idaea) Bioactivities in Ischemia-Reperfusion Injury // Journal of Agricultural and Food Chemistry. 2015. № 63. P. 5660–5669.

51. Milbury P. E., Graf B., Curran-Celentano J. M., Blumberg J. B. Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells // Invest Ophthalmol Vis Sci. 2007. № 48 (5). P. 2343–2349.

52. Zuo C., Li W., Wang L., Zhu J., Wang L., Wang Z. Effects of lingonberry extraction on the mice cognitive function damaged by chronic stress // Wei Sheng Yan Jiu. 2015. № 44 (6). P. 943–948.

53. Brown E. M., Nitecki S., Pereira-Caro G., McDougall G. J., Stewart D., Rowland I., Crozier A., Gill C. I. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: potential impact on colonic health // Biofactors. 2014. № 40 (6). P. 611–623.

54. Nikolaeva-Glomb L., Mukova L., Nikolova N., Badjakov I., Dincheva I., Kondakova V., Doumanova L., Galabov A. S. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo-

55. and Paramyxoviridae // Nat Prod Commun. 2014. № 9 (1). P. 51–54.

56. Ogawa K., Tsuruma K., Tanaka J., Kakino M., Kobayashi S., Shimazawa M., Hara H. The protective effects of bilberry and lingonberry extracts against UV light-induced retinal photoreceptor cell damage in vitro // J Agric Food Chem. 2013. № 61 (43). P. 10345–10353.

57. Davidson E., Zimmermann B. F., Jungfer E., Chrubasik-Hausmann S. Prevention of urinary tract infections with vaccinium products // Phytother Res. 2014. № 28 (3). P. 465–470.

58. Eid H. M., Ouchfoun M., Brault A., Vallerand D., Musallam L., Arnason J. T., Haddad P. S. Lingonberry (Vaccinium vitis-idaea L.) Exhibits Antidiabetic Activities in a Mouse Model of Diet-Induced Obesity // Evid Based Complement Alternat Med. 2014. DOI: 10.1155/2014/645812.

59. Ancillotti C., Ciofi L., Pucci D. et al. Polyphenolic profiles and antioxidant and antiradical activity of Italian berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) S.B. Young // Food Chem. 2016. № 204. P. 176–184.

60. Colak N., Torun H., Gruz J., Strnad M., Hermosín-Gutiérrez I., Hayirlioglu-Ayaz S., Ayaz F. A. Bog bilberry phenolics, antioxidant capacity and nutrient profile // Food Chem. 2016. № 201. P. 339–349.

61. Juadjur A., Mohn C., Schantz M., Baum M., Winterhalter P., Richling E. Fractionation of an anthocyanin-rich bilberry extract and in vitro antioxidative activity testing // Food Chem. 2015. № 167. P. 418–424.

62. Ogawa K., Tsuruma K., Tanaka J., Kakino M., Kobayashi S., Shimazawa M., Hara H. The protective effects of bilberry and lingonberry extracts against UV light-induced retinal photoreceptor cell damage in vitro // J Agric Food Chem. 2013. № 61 (43). P. 10345–10353.

63. Vorob’eva I. V. Current data on the role of anthocyanosides and flavonoids in the treatment of eye iseases // Vestn Oftalmol. 2015. № 131 (5). P. 104–108.

64. Deng H. W., Tian Y., Zhou X. J., Zhang X. M., Meng J. Effect of Bilberry Extract on Development of Form-Deprivation Myopia in the Guinea Pig // J Ocul Pharmacol Ther. 2016. № 32 (4). P. 196–202.

65. Luo H., Lv X. D., Wang G. E., Li Y. F., Kurihara H., He R. R. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice // Int J Food Sci Nutr. 2014. № 65 (5). P. 594–601.

66. Pandir D., Kara O., Kara M. Protective effect of bilberry (Vaccinium myrtillus L.) on cisplatin induced ovarian damage in rat // Cytotechnology. 2014. № 66 (4). P. 677–685.

67. Koupý D., Kotolová H., Kučerová J. Effectiveness of phytotherapy in supportive treatment of type 2 diabetes mellitus Billberry (Vaccinium myrtillus) // Ceska

68. Slov Farm. 2015. № 64 (1-2). P. 3–6.

69. Karcheva-Bahchevanska D. P., Lukova P. K., Nikolova M. M., Mladenov R. D., Iliev I. N. Effect of Extracts of Bilberries (Vaccinium myrtillus L.) on Amyloglucosidase and α-Glucosidase Activity // Folia Med (Plovdiv). 2017. № 59 (2). P. 197–202.

70. Oliveira P. S., Gazal M., Flores N. P., Zimmer A. R., Chaves V. C., Reginatto F. H., Kaster M. P., Tavares R. G., Spanevello R. M., Lencina C. L., Stefanello F. M. Vaccinium virgatum fruit extract as an important adjuvant in biochemical and behavioral alterations observed in animal model of metabolic syndrome // Biomed Pharmacother. 2017. № 88. P. 939–947.

71. De Mello V. D., Lankinen M. A., Lindström J., Puupponen- Pimiä R., Laaksonen D. E., Pihlajamäki J., Lehtonen M., Uusitupa M., Tuomilehto J., Kolehmainen M., Törrönen R., Hanhineva K. Fasting serum hippuric acid is elevated after bilberry (Vaccinium myrtillus) consumption and associates with improvement of fasting glucose levels and insulin secretion in persons at high risk of developing type 2 diabetes // Mol Nutr Food Res. 2017. May 29. DOI: 10.1002/

72. mnfr.201700019.

73. Burdulis D., Sarkinas A., Jasutiené I., Stackevicené E., Nikolajevas L., Janulis V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity inbilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits // Acta Pol Pharm. 2009. № 66 (4). P. 399–408.

74. Smeriglio A., Monteleone D., Trombetta D. Health effects of Vaccinium myrtillus L.: evaluation of efficacy and technological strategies for preservation of active ingredients // Mini Rev Med Chem. 2014. № 14 (7). P. 567–584.

75. Yamakawa M. Y., Uchino K., Watanabe Y. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease // Nutr Neurosci. 2016. № 19 (1). P. 32–42.

76. Virel A., Rehnmark A., Orädd G., Olmedo-Díaz S., Faergemann E., Strömberg I. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson’s disease – phagocyte influx to the brain is promoted by bilberry-enriched diet // Eur J Neurosci. 2015. № 42 (10). P. 2761–2771.

77. Ahrén I. L., Xu J., Önning G., Olsson C., Ahrné S., Molin G. Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats // Clin Nutr. 2015. № 34 (4). P. 719–726.

78. Roopchand D. E., Carmody R. N., Kuhn P., Moskal K., Rojas-Silva P., Turnbaugh P. J., Raskin I. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome // Diabetes. 2015. № 64 (8). P. 2847–2858.

79. Taira T., Yamaguchi S., Takahashi A., Okazaki Y., Yamaguchi A., Sakaguchi H., Chiji H. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet // J Clin Biochem Nutr. 2015. № 57 (3). P. 212–216.

80. Белова Е. А., Гуляев А. Е., Коваленко Л. В., Шульгау З. Т. Полифенольные компоненты северных дикорастущих ягод, антиоксидантный и противовоспалительный потенциал их экстрактов // Вестник СурГУ. Медицина. 2018. № 1. С. 75–78.

81. Лютикова М. Н. Изучение состава биологически активных компонентов дикорастущих ягод Vaccinium vitis-idaea и Oxycoccus palustris в зависимости от степени их зрелости и условий хранения : автореф. дис. канд. хим. наук. Сургут, 2013. 124 с.

82. Новиков B. C., Губанов И. А. Популярный атлас-определитель. Дикорастущие растения. 5-е изд., стереотип. М. : Дрофа, 2008. 415 с.

83. Югория : энцикл. Ханты-Мансийского автономного округа. Ханты-Мансийск : НИИ регион. энцикл. ТюмГУ, 2000. 400 с.


Рецензия

Для цитирования:


Кривых Е.А., Гуляев А.Е., Коваленко Л.В. ПОТЕНЦИАЛ ГЕРОПРОТЕКТОРНОЙ АКТИВНОСТИ ПОЛИФЕНОЛОВ ТИПИЧНЫХ СЕВЕРНЫХ ЯГОД. Вестник СурГУ. Медицина. 2019;(1 (39)):65-72.

For citation:


Krivykh E.A., Gulyaev A.E., Kovalenko L.V. THE POTENTIAL OF GEROPROTECTIVE ACTIVITY IN POLYPHENOLS TYPICAL OF NORTHERN BERRIES. Vestnik SurGU. Meditsina. 2019;(1 (39)):65-72. (In Russ.)

Просмотров: 214


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-3447 (Online)